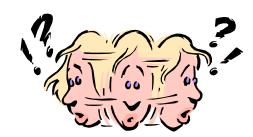


Toward automated problem analysis of large-scale storage

Priya Narasimhan, Greg Ganger, Chuck Cranor

Carnegie Mellon Parallel Data Laboratory


Automated Problem Analysis

- Problem analysis is very difficult
 - for administrators and debuggers alike
 - ever-worsening as scale grows
- Goal: automate it and get proactive
 - failure detection and prediction
 - problem determination (causes and effects)
- How: instrumentation plus statistical tools

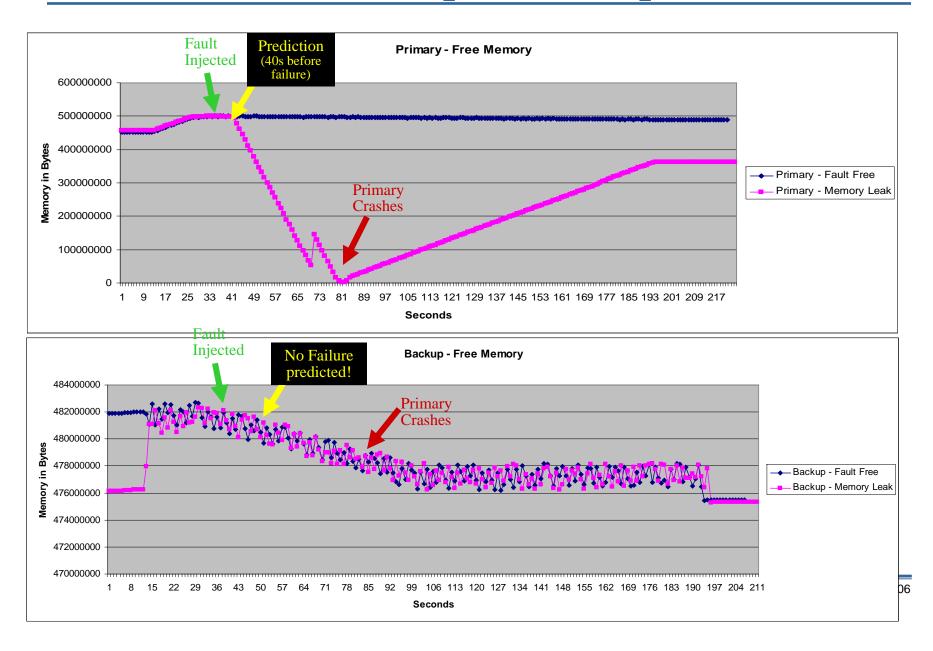
Problem determination is very difficult

- Goal: identify failed components and root cause
 - guiding repair and prevention of recurrence
- Very challenging in large-scale environment
 - can have multiple manifestations with a single cause
 - can have multiple causes for a single manifestation
 - problems and/or their manifestations can "travel" among communicating components
 - ... and might just be workload change

A bit more on approach

- Collect and orchestrate instrumentation
 - explicitly reported "events"
 - significant changes/hiccups observed by components
 - activity tracking

Activity tracking instrumentation


- Tracks requests along execution path
 - trace records logged (at ~200 strategic points)
 - < 5-6% overhead on performance and storage space
- Post-processed for data needed
 - per-workload, per-resource demands
 - per-request flow and latency maps
- Multiple uses
 - problem diagnosis, of course
 - also for guiding tuning (automatically or otherwise)

A bit more on approach

- Collect and orchestrate instrumentation
 - explicitly reported "events"
 - significant changes/hiccups observed by components
 - activity tracking
- Statistical tools (e.g., machine learning)
 - there are many, with different strengths/weaknesses
 - example usages
 - sample usage of resource X periodically and mine for anomalies in the time series data
 - categorize requests according to measured characteristics and watch for changes in (1) the set of categories or (2) the percentages of requests in each category

Carnegie Mellon Parallel Data Laboratory

One "simple" example

Summary

- End goal: self-healing (autonomics; Self-* Storage)
 - automatically detect, diagnose, and repair problems
 - or, better, replace "detect" with "predict" and be proactive
- Least understood aspect: the "diagnose" step
 - need deep instrumentation
 - automatically identify failed components (to repair)
 - automatically identify root causes (to prevent recurrences)
- Some key sub-questions
 - trade-off between instrumentation detail and accuracy
 - pros/cons of different algorithms for different problems

For more information: http://www.pdl.cmu.edu/

Greg.Ganger@cmu.edu

Director, Parallel Data Lab

Carnegie Mellon Parallel Data Laboratory